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Abstract— Maintaining Situational Awareness (SA) is critical
in space exploration contexts, yet made particularly difficult due
to the presence of communication latency. In order to increase
human SA without inducing cognitive overload, researchers
have proposed Performative Autonomy (PA), in which robots
intentionally interact at a lower level of autonomy than they
are capable of. While researchers have demonstrated positive
impacts of PA on team performance even under high latency,
previous work on PA has not examined how the benefits of PA
might be mediated by latency. In this work, we thus evaluate the
impact of latency and PA on trust, SA, and human perceptions
of robot intelligence and autonomy. Our results suggest that
lower performed autonomy leads to increased cognitive load,
especially when robot communication happens frequently and
latency is present. In addition, we observe no effect of the PA
strategies used within our experimental paradigm on SA, and
instead find evidence that operating under high latency leads
to negative perceptions of robots regardless of choice of PA
strategy.

I. INTRODUCTION AND MOTIVATION

Robots deployed in space exploration contexts, whether
autonomous, semi-autonomous, or teleoperated, can have
significant impact on the success of exploration missions [1].
Free-flying Astrobee robots, for instance, can assist with
maintenance and repetitive tasks, redirecting human crew-
mates’ attention to more important tasks [2]. Other types
of robots, such as rovers, are critical to long-term space
exploration contexts that are dangerous or infeasible for
human astronauts [3]. Critically, humans teaming with robots
in space exploration contexts, as well as other high-stake
domains where safety is paramount (e.g., urban search and
rescue [4], disaster response [5], industry [6], surgery [7])
tend to experience high levels of cognitive load, which may
lead to reduced Situational Awareness (SA). Moreover, it is
critical for astronauts and ground control operators to main-
tain high SA about their robot teammates’ ongoing tasks, as
the loss of human SA can lead to fatal consequences [8], [9].

To minimize cognitive load while boosting human ef-
ficiency, researchers have proposed the use of adaptive
automation to dynamically adjust robot autonomy levels to
account for cognitive load [10], [11]. Yet while adaptive
automation can help decreasing human cognitive load, it may
also lead to the undesired loss of SA [12]. As such, robots
also need to mitigate the loss of SA by bringing human atten-
tion to task-relevant stimuli while preserving their cognitive
load. To meet this need, Roy et al. [13] introduced Performa-
tive Autonomy (PA), in which autonomous robots deliberately
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choose to “perform” a lower level of autonomy than they
are truly capable of, by asking questions they do not truly
need the answer to (or engaging in other communicative
activities that increase SA). The authors showed that robots
that leverage PA as a communication strategy may increase
human teammates” SA by bringing their attention to impor-
tant task elements without raising cognitive load. In addition
to SA, natural language strategies like PA can help calibrate
other important factors to human-robot collaboration, such
as trust [14], [15]. Yet, while natural language interaction
is expected to be increasingly important as an enabling
modality for collaborative space tasks [16], the potential for
natural language-based human-robot interactions in space,
especially between remote interactants, may be limited by
the communication latency that characterizes space contexts.

In previous work, Sousa Silva et al. [17] further demon-
strated positive impacts of PA on human perceptions of
robots as teammates even in high latency scenarios. However,
they did not examine whether increased latency might atten-
uate — or accentuate — the benefits of PA. In addition, prior
work has not yet studied whether changes in PA actually
lead to noticeable changes in perceived robot autonomy. This
is important because robots that are perceived to be less
autonomous may also be perceived as less intelligent [18],
and lower levels of autonomy and intelligence may in turn
lead to lower levels of human-robot trust [19]. In this work,
we thus experimentally assess the effects of PA and latency
on SA, Cognitive Load, Perceived Autonomy, Perceived
Intelligence, and Trust through a human-robot collaborative
task affected by latency.

We expect robots’ performance of lower levels of au-
tonomy to benefit human SA. This is because robots ask
questions that direct attention to important task aspects when
lower levels of autonomy are performed [13]. However, the
introduction of such questions makes human input necessary
for robot activity to resume. As such, we believe that human
perceptions of robot autonomy and intelligence will be lower
as lower levels of autonomy are performed [20]. These
lowered perceptions of robot capabilities may in turn lead to
reduced human-robot trust, as robots may be regarded as less
capable of completing their tasks without human input [21].
Furthermore, we believe that higher levels of latency will
have a negative impact on SA due to increased delays in
human-robot communication. Yet, we do not expect to ob-
serve latency effects on perceived robot autonomy, perceived
robot intelligence, or trust ratings, as we do not expect robots
to be blamed for longer experienced communication delays.
Finally, we do not believe that cognitive load will be affected



by PA nor latency, since previous work has observed stable
cognitive load rates when PA is in use, even in high-latency
contexts [13], [17]. Based on these intuitions, we propose
three key hypotheses:

H1: When robots perform lower levels of autonomy, hu-
man SA will improve. However, Perceived Autonomy,
Perceived Intelligence, and Trust ratings will be lower.
Cognitive load will not be affected.

H2: As Latency increases, human SA will deteriorate. Cog-
nitive load and ratings for Perceived Autonomy, Per-
ceived Intelligence, and Trust will not be affected.

H3: There will be no observed interaction effects between
Latency and PA Strategy.

II. METHODOLOGY
A. Experimental Design

To evaluate our hypotheses, we conducted a human-
subjects study that was approved by an Institutional Review
Board. In this study, participants were tasked with complet-
ing a collaborative resource management game simulating an
interaction that could happen in a space context. A Misty II
robot collected four different types of resources that could
then be spent by participants. Participants’ goal was to spend
resources to clear 20 “stations” randomly distributed across
a 10x10 grid as fast as possible. Each station required
either 60 resources of one color or 30 resources of two
colors to be cleared. Participants were able to increase their
SA about collected resource amounts by observing a panel
that displayed estimates of how many resources of each
color they had available. Similarly, they were able increase
their SA about the robot’s status by checking a separate
monitor with a live video feed of the robot. The robot was
surrounded by four colored indicators that represented the
game resources and always collected resources of the color it
faced. To coordinate which type of resource the robot should
collect, participants needed to wait for a robot message, i.e.,
participants were not able to task the robot with collecting a
specific resource type, unless expressly asked by the robot.
As in [17], robot messages were sent to participants every 50
seconds through concurrent text and audio. Communication
latency was designed to account for (a) the time needed for
the robot to send a message to the participant, (b) the time
needed for the participant’s input to be relayed back to the
robot, and (c) the time needed for the robot to process human
input and switch between resources. Due to space constraints,
we refer readers to [17] for additional game details.

Our experiment followed a Greco-Latin Square design
involving three latency levels and three PA levels. The three
latency levels were:

e Low Latency — 0 seconds to represent immediate, unin-
terrupted collaboration;

o Medium Latency — 15 seconds to represent the round-
trip communication delays of lunar missions [22];

e High Latency — 30 seconds to represent collaboration
in missions slightly beyond lunar range.

The three PA Strategies were those used by Roy et al. [13]:

o Low PA — Request selection between multiple options
(e.g., “I was collecting orange resources. Should I keep
collecting orange resources, or switch to pink resources,
or to red resources?”);

o Medium PA — Request confirmation of a single option
(e.g., “I was collecting red resources. Can I now switch
to collecting blue resources?”);

o High PA — Propose and select a single option without
opportunity for veto (e.g., “I was collecting pink re-
sources. I am now going to collect orange resources.”).

Participants played three games, experiencing all levels of
latency and PA strategies, as the Greco-Latin Square design
handled ordering effects for both factors simultaneously.

B. Measures

After each game, participants were given a survey that
measured their ratings of the robot.

1) Situational Awareness was measured in game through
questions inspired by Level 2 comprehension queries
from the Situational Awareness Global Assessment
Technique (SAGAT) [23]. Periodically the information
about how many resources were available was hidden,
and participants were asked to report which resource
level was highest from memory.

2) Cognitive Workload was measured through the NASA
Task Load Index (TLX) scale [24].

3) Perceived Autonomy was measured through the pre-
liminary version of the Robot Autonomy Perception
Scale (RAPS) described in [25].

4) Trust was measured through the Multi-Dimensional
Measure of Trust (MDMT) Capacity scale, using both
the Reliable and Capable subscales [26].

5) Perceived Intelligence was measured through the God-
speed IV scale [27].

C. Procedure

Upon arrival, participants signed an informed consent
form, surrendered electronic devices, and filled out a de-
mographics survey. They were randomly assigned to one
of our three experimental conditions and then taken to a
room with two desks: one with a computer and one with
a monitor displaying the Misty II robot. Participants were
told that the robot was operating in a remote location. Par-
ticipants were then walked through a tutorial to understand
game mechanics. After answering participants’ questions, the
experimenter headed to a separate room and remotely started
the first game. After the first game was finished, the exper-
imenter guided participants back to the survey room, where
they filled out the questionnaires and scales listed in the
previous subsection based on their most recent game. While
participants were completing the survey, the experimenter set
up the next game. Upon survey completion, participants were
guided back to the experiment room to play the second game.
This procedure was repeated until participants were done
with their third game. Finally, participants were debriefed
and paid $15.



D. Farticipants

115 participants (47 F, 66 M, 2 NB) were recruited from
the Colorado School of Mines academic body. Participant
ages ranged from 18 to 46 (M = 21.2,SD = 4.35). We
discarded 31 data points due to participants’ failed attention
checks, 6 data points due to robot malfunction, and 2 data
points from participants who completed the experiment twice
(the data from their first run was preserved). Data analysis
was thus performed on the data from the resulting 76
participants (35 F, 40 M, 1 NB), averaging 25 participants per
condition. All data is available online at https://osf.
io/5ja4ds.

E. Statistical Analysis

We conducted Bayesian Repeated Measures (RM)
ANOVA tests with Inclusion Bayes Factor (BFig) Analysis
through the bayestestR [28] and BayesFactor [29] R pack-
ages. These BFj, values were calculated across matched
models through model averaging [30], and indicate the rela-
tive strength of evidence for models including each candidate
main effect or interaction effect, in terms of ability to explain
gathered data. When a main or interaction effect could not
be ruled out (BFyy > 0.333, i.e., evidence against inclusion
(BFp1) no greater than 3:1), post hoc RM Bayesian t-
tests were used to examine pairwise comparisons between
conditions. Please refer to [17] for a detailed explanation as
to why we use a Bayesian statistical framework.

III. EXPERIMENTAL RESULTS

In this section, we report the results of our statistical analy-
sis. Table I shows the mean and standard deviation for each
dependent variable within each condition. Table II reports
the Inclusion Bayes Factors for the impact of Latency, PA
strategy, and their interactions, on each dependent variable.
Table III reports post hoc test results for Latency and PA
strategy. Finally, Figure 1 displays results across conditions
for each dependent variable.

A. Situational Awareness

An RM-ANOVA (see Table II) revealed very strong evi-
dence against effects of Latency or PA strategy on SA, and
anecdotal evidence against an interaction effect.

B. Cognitive Load

An RM-ANOVA (see Table II) revealed moderate evidence
for an effect of PA Strategy and for an interaction effect of
Latency and PA Strategy on cognitive load, and moderate
evidence against an effect of Latency. Post hoc tests (see
Table III) suggest that higher PA led to lower levels of
cognitive load. Finally, these tests also show that while
increased levels of Latency lead to higher cognitive load
levels in the Low PA and Medium PA conditions, they
actually lead to reduced cognitive load readings in the High
PA condition.

C. Perceived Autonomy

An RM-ANOVA (see Table II) revealed extreme evidence
for an impact of PA strategy on Perceived Autonomy, anec-
dotal evidence against an effect of Latency, and moderate
evidence against an interaction effect. Post hoc tests (see
Table III) revealed that higher PA led to higher Perceived
Autonomy ratings. Moreover, results suggest that increased
Latency might also lead to lower ratings.

D. Trust

An RM-ANOVA (see Table II) revealed moderate evidence
for an effect of Latency on Trust in the robot, strong evidence
against an effect of PA strategy, and anecdotal evidence
against an interaction effect. Post hoc tests (see Table III)
suggested that increased levels of Latency lead participants
to rate robots as less trustworthy teammates. In addition, as
Latency levels increased participants rated robots using the
Low PA and Medium PA strategies as less trustworthy. Yet,
increased Latency in the High PA condition led to higher
trust ratings.

E. Perceived Intelligence

An RM-ANOVA (see Table II) revealed strong evidence
of an effect of Latency on Perceived Intelligence, moderate
evidence against an effect of PA strategy, and anecdotal
evidence against an interaction effect. Post hoc tests (see
Table III) revealed no difference in Perceived Intelligence
ratings between robots operating under Low and Medium
Latency. However, results suggest that robots operating in
High Latency situations are generally perceived to be less
intelligent. In addition, robots using the Low PA and High
PA strategies were perceived to be more intelligent when op-
erating under Medium Latency over Low and High Latency.
On the other hand, robots using the Medium PA strategy were
perceived to be less intelligent as Latency levels increased.

IV. DISCUSSION
A. Hypothesis One

H1 stated that Perceived Intelligence, Perceived Auton-
omy, and Trust ratings would be lower as the robot’s PA
Strategy level decreased while SA would be improved and
cognitive load would remain the same. This hypothesis was
partially supported.

1) Perceived Autonomy: We confirmed that robots were
indeed perceived to be less autonomous when they were
performing lower PA strategies. This finding replicates [17]’s
results for perceived dependency and reinforce [13]’s propo-
sition that different levels of autonomy can be performed
through different types of dialogue.

2) Situational Awareness: The experimental results from
[13]’s work suggested that lower PA strategies were ben-
eficial for human teammates, increasing their overall SA.
However, the results obtained from our study suggest no
observable differences in SA across conditions. We believe
two key differences between our experiment and [13]’s may
help explain our conflicting results. First, in [13]’s work robot
communication was designed to happen every 100 seconds



Perceived Situational Cognitive Trust Perceived

Autonomy Awareness Load Intelligence

Mean SD || Mean SD || Mean SD Mean SD Mean SD
Low Latency (LL) 4513 | 1.191 0.879 | 0.099 || 41.707 | 21.499 5.306 | 1.070 3.700 | 0.730
Medium Latency (ML) | 4.584 | 1.170 0.880 | 0.095 || 44.795 | 19.125 5219 | 1.111 3.733 | 0.751
High Latency (HL) 4291 | 1.292 0.878 | 0.100 || 45.728 | 17.446 4.886 | 1.354 3.413 | 0.921
Low PA (LPA) 4.100 | 1.241 0.876 | 0.097 || 46.374 | 19.055 5.153 | 1.259 3.553 | 0.800
Medium PA (MPA) 4425 | 1.254 0.888 | 0.086 || 44.986 | 18.348 5218 | 1.138 3.690 | 0.823
High PA (HPA) 4.864 | 1.157 0.872 | 0.110 || 40.870 | 20.666 5.039 | 1.138 3.602 | 0.780
LL + LPA 3.831 | 1.335 0.898 | 0.081 42.256 | 24.398 5.205 | 1.256 3.500 | 0.880
LL + MPA 4944 | 1.182 0.855 | 0.095 38.653 | 20.655 5.832 | 0.838 4.104 | 0.751
LL + HPA 4765 | 1.055 0.883 | 0.120 || 44.213 | 19.443 4880 | 1.116 3.496 | 0.560
ML + LPA 4.165 | 1.306 0.886 | 0.087 || 46.707 | 17.768 5.166 | 1.259 3.696 | 0.705
ML + MPA 4241 | 1.262 0.900 | 0.085 || 46.385 | 20.329 5171 | 1.165 3.615 | 0.854
ML + HPA 5.347 | 0.941 0.853 | 0.113 || 41.293 | 19.277 5.319 | 0.909 3.888 | 0.695
HL + LPA 4304 | 1.083 0.845 | 0.123 50.160 | 15.000 5.089 | 1.261 3.464 | 0.814
HL + MPA 4.091 | 1.318 0.909 | 0.079 || 49.920 | 14.059 4.650 | 1.411 3.352 | 0.863
HL + HPA 4479 | 1.476 0.880 | 0.098 || 37.103 | 23.278 4918 | 1.389 3.423 | 1.086

TABLE I: Mean and Standard Deviation values for each analysis group.

Perceived Autonomy
Cognitive Load

Low Latency Medium Latency High Latency Low Latency Medium Latency High Latency

(a) Perceived Autonomy (b) Cognitive load

Trust,
Perceived Intelligence

1.0
Low Latency Medium Latency High Latency Low Latency Medium Latency High Latency

(c) Trust (d) Perceived Intelligence

Fig. 1: Effects of Latency and PA Strategy on key dependent variables. Error bars represent 95% confidence interval.

Latency | PA Strategy | Latency * PA Strategy

Perceived |, 5, 5.34e+05 0.250
Autonomy

i‘t“at“’“al 0.046 0.082 0354
wareness
Cognitive

Workload 0.110 5.32 4.14

Trust 4.69 0.098 0.776

Perceived | 5, 43 0.150 0.938
Intelligence

TABLE II: RM-ANOVA Inclusion Bayes Factors. Results
with conclusively positive evidence are bolded; Results with
conclusively negative evidence are grayed out and italicized.

whereas in our study it happened every 50 seconds. The more
frequent rate of communication might justify why SA levels
were high in all of our experimental conditions, as the robot
was raising human awareness about its current status more
often. Second, while in [13]’s experimental task participants
had to navigate different windows that contained different
sets of relevant information, in our experiment all important
information was available in the same environment. Having
the robot video feed and the panel displaying current resource

amounts always available might have helped participants
maintain high SA about the task in all of our conditions.

3) Cognitive Load: As in [13]’s and [17]’s work, we
expected that the use of PA strategies would not affect
participants’ workload levels across conditions. However,
participants felt more overwhelmed when collaborating with
robots performing lower levels of autonomy. This may be
explained by the fact that participants needed to perform
additional tasks when interacting with robots operating under
Medium and Low PA. Specifically, they needed to either
answer the robot’s Yes/No question in the Medium PA
condition and needed to arbitrate between several options
in the Low PA condition. In addition, the increased rate
of communication of our experimental context might have
contributed to participants’ increased cognitive load, as they
had to answer robot questions much more frequently. While
in [13]’s work cognitive load was measured through a single
Likert scale (which may not be enough to correctly assess
human factors [31]), we believe the less frequent rate of robot
communication contributed towards more stable cognitive
load levels among participants. Furthermore, while [17]’s
experiment had the same rate of communication as our exper-



Latency PA Strategy

Low Latency (LL) LL ML Low PA (LPA) LPA MPA

V. V. V. V. V. V.
Medium Latency (ML) | High Latency (HL) HL Medium PA (MPA) | High PA (HPA) | HPA
Perceived Autonomy 0.201 0.411 1.84 3.10 2.86e+05 75.03
Situational Awareness 0.178 0.170 0.172 0.248 0.180 0.312
Cognitive Load 0.272 0.354 0.195 0.312 6.11 2.35
Trust 0.214 5.70 3.33 0.185 0.233 0.412
Perceived Intelligence 0.186 4.69 40.58 0.357 0.194 0.277

TABLE III: Inclusion Bayes Factors (BFig) for Latency and PA Strategy. Results with conclusively positive evidence are
bolded; Results with conclusively negative evidence are grayed out and italicized.

iment, we believe that it might not have detected increased
cognitive load levels when lower levels of autonomy were
performed because they did not factor in the weights of the
NASA TLX scale components into their analysis.

4) Trust: As the robot performed lower levels of auton-
omy, we expected to see a negative response in participants’
ratings for trustworthiness. We believed that participants
would see the questions asked by the robots under the Low
and Medium PA conditions as indicators that the robot would
not be able to perform its tasks without human input. How-
ever, there were no observed effects of PA strategy on trust,
and participants provided positive ratings for trustworthiness
across all three conditions. This suggests that even though
participants perceived the robot as having different levels of
autonomy, they trusted the robot to complete its tasks.

5) Perceived Intelligence: Finally, we expected partic-
ipants to provide lower Perceived Intelligence ratings as
the robot performed lower levels of autonomy. Similarly to
our reasoning for trust, we believed that participants would
perceive the robots that asked questions to be less intelligent,
as they required human input to carry on with their next
task. Yet, our results present no effects of PA strategy on
Perceived Intelligence ratings. Overall, participants provided
positive ratings for Perceived Intelligence, independently of
which PA strategy was used by the robot.

B. Hypothesis Two

H2 stated that increased Latency levels would lead to
worse SA, but would not affect any of the other measures.
This hypothesis was partially supported.

1) Situational Awareness: We expected participants’ SA
levels to decrease as latency increased, as participants would
get distracted with other tasks while waiting for the robot
to complete its previous assignment. However, we did not
observe any effects of latency on SA, and participants main-
tained high SA levels across all conditions. This may have
been observed because latency did not affect the rate with
which SA questions were displayed, requiring participants to
maintain the same level of attention throughout each game,
independently of how much latency was experienced.

2) Cognitive Load: As expected, there were no effects of
latency on participants’ cognitive load. We believe this hap-
pened for the same reason listed above for SA: the rate with
which participants were performing tasks did not change ac-
cording to latency. While games with higher latency naturally

took longer to be completed, participants performed the same
tasks at the same rate across all conditions. Higher latency
affected the number of resources participants had in storage
for each color, but did not change the game mechanics or the
rate with which the robot would communicate with them.

3) Perceived Autonomy: Because the results observed
from our analysis were anecdotal and inconclusive, more data
needs to be collected to arrive at conclusive results for Per-
ceived Autonomy in terms of latency. However, our analysis
indicates that, overall, latency had no effect on participants’
perceptions of the robot’s levels of autonomy. This trend
agrees with [17]’s results for perceived dependency.

4) Trust: Before each game, participants were reminded
that any experienced latency was not the robot’s fault but
rather a product of the robot’s remote location. As such,
we did not expect any differences in participants’ ratings
for trust based only on latency. Yet, results show that
participants placed less trust in robots operating under higher
latency levels. We believe participants may have judged such
robots to be less consistent and/or reliable in terms of task
completion time, leading to stronger doubts about the robot’s
ability to quickly accomplish its tasks.

5) Perceived Intelligence: For the same reason listed
above for trust, we believed participants would not change
their ratings of Perceived Intelligence based only on expe-
rienced latency. However, results suggest that participants
perceived the robots to be less intelligent when operating
under higher levels of latency. This is interesting, as latency
only affected the frequency of communication between the
participant and the robot, but did not change the way in
which the robot was communicating. It could be the case
that participants expected the robot to work its way around
the latency, although it was a factor beyond its control.

C. Hypothesis Three

H3 stated that we would not observe interaction effects on
any of our measures. This hypothesis was partially supported.

1) Cognitive Load: The observed interaction effects for
cognitive load indicate that while increased levels of latency
led to higher cognitive load in the Low PA and Medium PA
conditions, they actually led to reduced cognitive load levels
in the High PA condition. When the robot was operating
under the High PA strategy participants only had to listen
to what the robot was going to do next. Instead, in the Low
PA and Medium PA conditions, they were presented with



prompts that displayed the robot’s question and provided
them with the available answer options. Dealing with these
questions may have been overwhelming as latency levels
increased. On the other hand, the lack of prompts combined
with higher latency in the High PA condition may have given
participants more time to focus on other aspects of the game,
reducing their overall cognitive load.

2) Trust: The overall results of our Bayesian analysis
present anecdotal evidence against an interaction effect on
trust, meaning that we cannot rule out such an effect. The
bar plots in Figure l1c show that increased latency levels in
the Low PA and the Medium PA conditions led participants
to rate robots as less trustworthy. However, participants
rated robots operating under the High PA strategy as more
trustworthy as latency increased, especially in the Medium
Latency condition. Given that robots operating under High
PA always collected the least available resource color, partic-
ipants might have felt that the robot could still be trusted in
situations where latency was present. In addition, the amount
of trust that participants placed on the robot in High Latency
conditions was higher than that of Low Latency scenarios, but
seems to have diminished compared to the Medium Latency
condition. Thus, although participants seemed to believe the
robot was capable of completing its tasks under high latency
conditions, they seemed to become more skeptical over time.

3) Perceived Intelligence: Similarly to trust, our results
present only anecdotal evidence against an interaction ef-
fect on Perceived Intelligence. The bar plots in Figure 1d
show that robots using the Low PA and High PA strategies
were perceived to be more intelligent when operating un-
der Medium Latency. On the other hand, robots using the
Medium PA strategy were perceived to be less intelligent as
latency increased. That is, robots that asked Yes/No questions
were perceived to be less intelligent than robots that asked
for human arbitration and robots that stated their next action.
Participants may have interpreted the Yes/No questions as
a reflection of the robot’s inability to select and confirm
a plan of action on its own. The use of statements and
the requests for arbitration may have been interpreted as
intelligent approaches to collaboration. While the former
strategy prioritized collection from the colored pool that had
lower numbers, the latter provided participants with more
control over what their robot teammate’s actions, mitigating
the negative impacts of latency in collaboration.

V. CONCLUSION

In this study, we investigated the impacts that Performative
Autonomy and Latency have on important factors for col-
laborative, remote human-robot interaction scenarios. This
investigation yielded three main insights. First, robots that
use Performative Autonomy to send frequent status updates
can boost overall human Situational Awareness. However,
if communication is too frequent it might increase human
cognitive load to undesirable levels. Second, robots that
perform lower levels of autonomy were perceived as less
autonomous. Yet, that did not lead participants to regard
these robots as less intelligent or less trustworthy. Finally,

robots operating under high latency were regarded as less
trustworthy and less intelligent, even when they were not
directly responsible for the latency itself.

Overall, our results suggest that lower performed auton-
omy leads to increased cognitive load, especially when robot
communication happens frequently and latency is present. In
addition, we observe no effect of Performative Autonomy
on Situational Awareness, and instead find evidence that
operating under high latency leads to negative perceptions
of robots regardless of choice of Performative Autonomy
strategy. While these findings allow us to better understand
the benefits and drawbacks of using Performative Autonomy
in collaborative human-robot interaction contexts affected by
latency, such as space exploration, there are a few limitations
regarding our study that should be addressed by future work.

A. Limitations and Future Work

In this work, our results (in contrast to [13]’s) showed that
our use of PA strategies had no impact on SA and actually
increased human levels of cognitive load. We believe this
may have been the case because in our experimental context
robot communication happened much more frequently than
in [13]’s. Furthermore, while in [13]’s setup participants
needed to switch views between two windows with different
information, in our setup all necessary information could
be accessed simultaneously. Future work should investigate
how these differences in communication frequency, task
complexity, and use of PA strategies impact SA, cognitive
load, and other important human factors.

In addition, we assumed that the robot was aware of
the ideal actions to take, and this information informed
the questions that were asked to the human. In order to
obtain a complete assessment of PA, future work should
investigate scenarios in which the robot may not know the
ideal course of action ahead of time. This could lead to
scenarios in which humans must supervise robot activity in
a much more active way [32]. It could also lead to situations
in which the questions asked by the robot are informed by
suboptimal plans that could lead to worse task performance
and cognitive load levels. On the other hand, it could increase
SA if it encouraged human teammates to think about why
the proposed plan was suboptimal.

Finally, we cannot rule out the possibility of learning
effects between the three games played by participants. For
example, it is possible that participants learned to place
greater attention on the resource amounts available in an-
ticipation of SA questions. As such, future work should
conduct similar experiments in a between-subjects fashion
to address participants’ views of robots that are based on a
single interaction. These experiments should also vary the
types of SA questions that are asked to prevent participants
from predicting their contents and their timings.
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